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Abstract It is well established that non-uniform sampling

(NUS) allows acquisition of multi-dimensional NMR spec-

tra at a resolution that cannot be obtained with traditional

uniform acquisition through the indirect dimensions. How-

ever, the impact of NUS on the signal-to-noise ratio (SNR)

and sensitivity are less well documented. SNR and sensi-

tivity are essential aspects of NMR experiments as they

define the quality and extent of data that can be obtained.

This is particularly important for spectroscopy with low

concentration samples of biological macromolecules. There

are different ways of defining the SNR depending on how to

measure the noise, and the distinction between SNR and

sensitivity is often not clear. While there are defined proce-

dures for measuring sensitivity with high concentration

NMR standards, such as sucrose, there is no clear or gener-

ally accepted definition of sensitivity when comparing dif-

ferent acquisition and processing methods for spectra of

biological macromolecules with many weak signals close to

the level of noise. Here we propose tools for estimating the

SNR and sensitivity of NUS spectra with respect to sampling

schedule and reconstruction method. We compare uniformly

acquired spectra with NUS spectra obtained in the same total

measuring time. The time saving obtained when only 1/k of

the Nyquist grid points are sampled is used to measure k-fold

more scans per increment. We show that judiciously chosen

NUS schedules together with suitable reconstruction meth-

ods can yield a significant increase of the SNR within the

same total measurement time. Furthermore, we propose to

define the sensitivity as the probability to detect weak peaks

and show that time-equivalent NUS can considerably

increase this detection sensitivity. The sensitivity gain

increases with the number of NUS indirect dimensions.

Thus, well-chosen NUS schedules and reconstruction

methods can significantly increase the information content of

multidimensional NMR spectra of challenging biological

macromolecules.
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Abbreviations

NMR Nuclear magnetic resonance

hmsIST Harvard Medical School implementation of the

iterative soft thresholding approach

FFT Fast Fourier transformation

Introduction

Non-uniform sampling (NUS) has first been proposed

twenty-five years ago (Barna et al. 1987; Hoch 1989), and

numerous procedures for designing sampling schedules, and

reconstruction methods have been proposed (Hoch and Stern

1996, 2001). It has clearly been shown that the spectral

resolution of multi-dimensional NMR spectra can be dra-

matically enhanced with NUS. However, its impact on sig-

nal-to-noise and sensitivity has not yet satisfactorily been

The programs for generating Poisson Gap Sampling schedule and for

reconstruction of NUS spectra are available upon request.
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explored and/or has been controversial. Thus, NUS has still

not become mainstream perhaps because standard proce-

dures for creating sampling schedules are still missing, and

there are different procedures for spectra reconstruction that

cannot easily be applied for routine NMR users or bio-

chemists who are primarily concerned with biological or

structural questions rather than signal processing. Off-the-

shelf software packages for creating sampling schedules and

processing NUS data are still not easily available. More

importantly, the benefits of NUS in terms of gain in resolu-

tion, signal-to-noise ratio (SNR) have not become obvious to

the general NMR community. Here we show that NUS and

suitable reconstruction methods can enhance both SNR and

sensitivity in multidimensional NMR spectra of proteins,

which opens new avenues for studies of larger and more

challenging systems.

A crucial aspect for NUS is to develop optimal sampling

schedules. Initially, it was proposed to use exponentially

weighted random sampling (Barna et al. 1987) or uni-

formly random sampling (Mobli et al. 2006; Kazimierczuk

et al. 2008; Rovnyak et al. 2004a). Different approaches of

radial or concentric sampling have also been proposed

(Kupce and Freeman 2003; Coggins and Zhou 2008).

Recently, it was suggested to select the gaps of skipped

sampling grid points according to a Poisson distribution

(Hyberts et al. 2010, 2011) or arranging sampling points

picked using Poisson discs (Kazimierczuk et al. 2008). For

the comparisons described here we use Poisson-Gap sam-

pling (Hyberts et al. 2010, 2011) although similar results

might be obtained with other sampling schedules.

Initially, NUS data sets were reconstructed with differ-

ent versions of Maximum Entropy principles (Barna et al.

1987; Hoch 1989), however several other methods have

also been recently developed. Examples include various

applications of the CLEAN procedure (Coggins and Zhou

2008; Högbom 1974; Kupce and Freeman 2005; Wen et al.

2011), or the multi-dimensional decomposition method

(MDD)(Tugarinov et al. 2005; Hiller et al. 2009; Denk

et al. 1986). We have developed the Forward Maximum

entropy (FM) method (Hyberts et al. 2007) and could show

experimentally that sensitivity can be gained compared to

time-equivalent uniform sampling (Hyberts et al. 2010).

While the FM approach provides excellent reconstructions

of spectra non-uniformly sampled in one or two indirect

dimensions (Hyberts et al. 2011, 2009) it is computation-

ally expensive for 3D and 4D NMR spectra. A related

variant of compressed sensing was shown using an iterative

re-weighted least squares approach (Kazimierczuk and

Orekhov 2011). The SIFT approach is another technique

for reconstruction of NUS spectra (Matsuki et al. 2009).

Kozminski and coworkers have developed a procedure

termed Signal Separation Algorithm (SSA) (Stanek and

Kozminski 2010; Stanek et al. 2011), which is a hybrid

approach that combines the concepts of CLEAN (Högbom

1974) and manual artifact removal (Kazimierczuk et al.

2007). We recently developed a procedure based on the

principle of iterative soft thresholding (IST) as outlined by

Drori who used wavelet transforms (Drori 2007). Our

implementation, hmsIST, uses the fast Fourier transform

(FFT) and its inverse (FFT-1) as the most time consuming

steps during reconstruction (Hyberts et al. 2012b). It is very

fast and can readily reconstruct large high-resolution

spectra up to 4 dimensions. Thus, we have used hmsIST for

analyzing SNR and sensitivity of NUS spectra although

similar results could be obtained with other reconstruction

methods. Indeed, Nietlispach and coworkers recently

described a related approach (Holland et al. 2011; Bostock

et al. 2012) but used a minimization of the l1 norm of

spectra to reconstruct NUS time domain data.

‘‘Sensitivity’’ is a commonly debated concept in NMR,

especially since NMR itself is considered an ‘‘insensitive’’

technique. Even though often used, it is nearly always

confused with SNR. While SNR is defined and measured

relatively easy, the concept of sensitivity is more elusive.

Whereas there is a relationship between the concepts of

SNR and sensitivity, and a reasonable intuitive one when

dealing with traditional uniformly sampled NMR spectra,

the relationship becomes less intuitive when applied to

reconstructed NUS spectra. Hence, we find it important to

underscore the difference between ‘‘sensitivity’’ and SNR,

and to develop a technique in which it is possible to

comprehend the sensitivity issue for NUS NMR

spectroscopy.

SNR is a common concept throughout signal processing

theory. In traditional signal theory, the SNR is measured in

terms of the square root of the fraction between the power

of the signal intensity and the power of the noise intensity.

This is easily treated mathematically. In the NMR com-

munity, however, SNR is defined as the peak height over

the root-mean-square value of the noise. Whereas the noise

is treated similarly in the two methods of measuring SNR,

the NMR way of measuring the signal strength is different.

It is more intuitive, more obvious to measure and actually

somewhat more sensitive to acquisition specifics than tra-

ditional handling in signal theory. The spectrometer-ven-

dors are very well aware of the latter and have to specify

sweep widths, carrier position, acquisition length and

possible use of apodization, in addition to shimming and

tuning of the probe, to receive reproducible values.

In this paper we describe several different ways of

measuring the SNR and show that NUS can significantly

enhance the SNR compared to time-equivalent uniformly

recorded multidimensional NMR spectra. In addition, we

propose a technique for estimating the sensitivity, defined

as the probability of detecting weak peaks, of NUS spectra

as compared with time-equivalent uniformly sampled
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spectra. We show that judiciously planned sampling

schedules and optimized reconstruction methods can dra-

matically enhance SNR and sensitivity. In addition, the

enhancement is larger with higher dimensionality of the

spectra. The results are based on spectral simulations and

comparisons of time-equivalent US and NUS 2D HSQC

spectra and 3D 15N-dispersed NOESY experiments.

Obviously, there is always a trade off between resolution

and sensitivity. The point of this paper is to analyze the

effect of NUS on sensitivity at a given resolution deter-

mined by the length of the evolution time to avoid this

problem.

Materials and methods

Simulations

For our simulations we have utilized several Linux based

computer setups, namely (a) an Intel� CoreTM2 Quad CPU

based at 2.40 GHz, equipped with a solid-state disk drive

for faster file transfer, (b) an 16 core Intel� Xeon� based at

2.67 GHz, equipped with 4 optional NVIDIA C2050 Tesla

GPU boards, and (c) a 128 core 32 node Intel� Xeon�

based cluster at 3.00 GHz. The first mentioned was typi-

cally used for 1D simulations, the other two options for 2D

simulations. Reconstruction of GB1 spectra were per-

formed on the 128-core cluster.

C-shell programming was used extensively for executing

and controlling the simulations. Standard UNIX/Linux fea-

tures as od (octal dump) and sort (sorting) were used on the

data sets and several NMRPipe programs, such as addNMR,

addNoise, nmrDraw and nmrPipe, were employed for con-

structing the data sets. For producing, reconstructing and

converting the simulated data from US to NUS etc., in-house

produced programs such as pipe2phf, reduce, phfReduce,

istHMS and phf2pipe were used. Standard NMRpipe pro-

tocols were used for processing the simulated data.

For the purpose of this paper focused on sensitivity, the

signal position was chosen in such a manner that the sinc

functions are zero at every point in the frequency domain.

This was done to eliminate bias of particular peak max

position and keeping the signals symmetrical. In other

words, the entire energy of the signals are concentrated in a

particular location and not spread over the whole spectral

width. This yields the maximum height of a particular

signal. Effectively, this eliminates the need for peak fitting.

The procedure for creating sampling schedules with

Poisson Gap sampling was described in detail before (Hy-

berts et al. 2010). We use three weighting approaches, which

are identified with the SSW (sinusoidal weighting) param-

eter. Here SSW = 0 indicates uniform random weighting

over the whole time domain; SSW = 1 stands for sinusoidal

weighting using one half of a sinus period with dense sam-

pling at the beginning and the end of the evolution time.

Dense sampling at the beginning with weighting according

to a quarter of a sinus period is obtained with SSW = 2.

All simulations used 1,024 complex time domain data

points and a sweep width of 7,507.50 Hz at 500.132 MHz.

The dwell time 1/SW is hence 133.2 ls, and the length of

the free induction decay is 137.4 ms. This corresponds to

1.2 T2 where T2 is 113 ms. The data are transformed by

using one zero fill to 2,048 real frequency domain data

points. The final digital resolution is 3.666 Hz/point.

Sample preparation

For recording the 2D HSQC spectra and the 3D 15N-dis-

persed NOESY experiments a 2 mM sample of 15N labeled

GB1 was prepared as described previously (Gronenborn

et al. 1991; Zhou et al. 2001).

Results

Comparison of time-equivalent US and NUS NMR

spectra

An estimation of potential gains in SNR or sensitivity due

to NUS needs to compare uniformly sampled and NUS

NMR spectra acquired at the same overall measurement

time. We call these time-equivalent spectra. When only 1/k

points of the total Nyquist grid points are sampled, k times

more scans per increment are recorded in time-equivalent

NUS data. For example, when 8 scans per increment are

recorded in the US spectrum, a NUS spectrum with 1 %

sampling records 800 scans per increment for the same

total measuring time. All comparisons presented here are

for such time-equivalent spectra.

Recording multidimensional NMR spectra to 1.2 T2

in the indirect dimensions

There is no generally accepted practice of how far out in

the indirect dimensions NMR spectra should be sampled.

We claim that optimal sampling should extend to around

1.2 T2 of the active coherence in each indirect dimension.

This is based on the consideration that up to this evolution

time measuring the signal increases the SNR while re-

coding data beyond this point decreases the SNR. This has

been described in detail by Rovnyak (Rovnyak et al.

2004b). Thus, recording data up to 1.2 T2 would provide

high resolution at a good SNR. Obviously, spectra of small

proteins do not usually suffer from resolution problems and

can efficiently be recorded at lower resolution and would

not necessarily need high-field instruments. Experimental
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procedures for such simpler systems are well established.

The goal of this study, however, is to optimize spectros-

copy for large and challenging proteins that are limited by

spectral crowding and sensitivity, and need to utilize the

resolution of the highest field instruments.

All simulation and experiments described here are with

the goal in mind to sample up to around 1.2 T2 in the

indirect dimensions to make use of the resolution power of

modern high field instruments while optimizing SNR and

the sensitivity to detect as many weak peaks as possible.

Indeed, we use the term ‘‘detection sensitivity’’ as the

ability to observe weak peaks that are close to the noise

level. This is in contrast to the ‘‘hardware sensitivity’’

usually reported by spectrometer companies, which is

essentially the SNR for given standard compounds, and is

usually much larger than one. This hardware sensitivity is

well defined with regard to parameters, such as spectral

width, processing, recycling delays, or noise measurement.

Non-uniform sampling can enhance the SNR depending

on the sampling schedules used

To test whether NUS can enhance the SNR we simulated a

1D spectrum as an example of an indirect dimension (1,024

complex points, 7,507.50 Hz), with four signals of relative

intensities 1, 0.5, 0.25 and 0.125 (Fig. 1a; Table 1). RMS

Gaussian noise was added to simulate real spectra with a

final noise level of 2.2 % rms of the tallest signal. The time

domain signal was sampled out to 1.2 T2 (0.113 s, 1,024

complex points) either uniformly (Fig. 1b), or non-uni-

formly with sampling densities of 25 and 10 %, using

Poisson-Gap sampling as described previously (Hyberts

et al. 2010) and using a sinusoidal weighting parameter

(SSW = 2), which weighs the gap lengths according to the

first quarter of a sine function. This means dense sampling

at the beginning and larger gaps at the end of the acqui-

sition time. To compare time-equivalent spectra acquisi-

tion, in the 25 % NUS spectrum, the signal intensities were

increased by a factor of four, and the noise was increased

by a factor of two. Similarly, in the 10 % NUS spectrum,

the signal intensities were increased by a factor of 10, and

the noise was increased by a factor of
ffiffiffiffiffi

10
p

. The NUS

spectra were reconstructed with the hmsIST program

(Hyberts et al. 2012b), and the time domain date of the US

and the two reconstructed NUS FIDs were Fourier trans-

formed with the same processing parameters.

The peak heights obtained are annotated in the four

panels of Fig. 1 and listed in Table 1. As can be seen the

relative peak heights are essentially the same within the

scope of the original noise added. The noise was measured

using three different procedures: mean, rms and max.

These are defined as following:

Fig. 1 Simulation of the effect

of NUS on the signal to noise

ratio (SNR) in time-equivalent

spectra. a Spectrum simulated

with an array of four Lorentzian

signals of different height

without simulated noise. The

time-domain signal is sampled

to 1.2 T2. The FID contains 2 k

complex points. b Same but

noise was added, the time

domain data we transformed

with FFT. c NUS (25 % density,

SS = 2, 4 9 NS) d NUS (10 %

density, SS = 2, 10 9 NS). The

NUS time domains were

reconstructed with hmsIST. In

all cases the final time domain

signals were zero filled and

Fourier transformed without

apodization. The generated peak

heights are marked in the figures
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noiseðmeanÞ ¼ 1

n

X

n

i¼1

jvij;

noiseðrmsÞ ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

jvij2
s

;

noiseðmaxÞ ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

jvij1 ¼ maxfjvijg1

s

where |vi| is the absolute value of a data point only con-

taining noise. A representative section of noise is plotted

with a five-fold expansion and the values of measured

noise are listed in the text boxes. The SNRs obtained for

the three procedures of noise measurement are listed in

Table 1. It is clear, when using mean or rms noise, the SNR

is dramatically enhanced in time-equivalent NUS spectra.

On the other hand, when using the maximum noise, or

peak-noise the gain is more moderate. However, there are

no points with larger value of noise than observed in the

US spectra. If there were, such elements of noise could be

taken as false positives.

It should be noted that the SNR as discussed above does

not relate to the accuracy of measuring peak heights. To

investigate this we used the same simulated spectrum as in

Fig. 1, added 100 sets of random noise with different seed

numbers and measured the peak heights. We find that the

standard deviation of scaled peak heights in time-equiva-

lent US and NUS spectra is approximately the same

(Supplementary Table 1). The hmsIST procedure itera-

tively transfers the top sections of the peaks to a second file

location at stages when the spectrum is still very noisy due

to artifacts and real noise. Thus, the accuracy of peak

height measurement does not improve with NUS and IST

reconstruction of the data. Mathematically speaking, the

noise is not only non-Gaussian but also non-uniformly

distributed. The IST reconstruction procedure suppresses

apparent noise in spectral regions that do not contain sig-

nals because those regions are transferred to the other file

location at late stages of the reconstruction. We measured

the standard deviation of the noise in Fig. 1b–d, which

remains the same for these-equivalent US and NUS spectra

(see noise measures in Fig. 1) but the noise is distributed

differently as measured by the kurtosis and shown in

Supplemental Fig. S1. On the other hand, the signal

strengths are increased due to the NUS and IST recon-

struction. The absolute peak heights are listed in Fig. 1 on

top of the peaks. This causes the spectral appearances in

Fig. 1 with an apparent increase of SNR, which facilitates

analysis of the spectra and enhances the ability to detect

weak peaks as described below.

Experimental comparison of SNR in US

and time-equivalent NUS spectra

Next we asked whether the SNR gain in NUS spectra

indicated by the simulations described above might also be

observed experimentally. We measured two 1H–15N HSQC

spectra of a 2 mM sample of the GB1 domain of staphy-

lococcal protein G (GB1). The first spectrum (Fig. 2a) was

recorded uniformly with 8 scans per increment; the second

spectrum (Fig. 2b) was recorded non-uniformly with 10 %

Poisson Gap sampling, SSW = 2, and 80 scans per incre-

ment. A representative cross section is shown in both

spectra, and the SNR (rms) was calculated. The noise for

this calculation was taken from the data between 7 and

6 ppm. Indeed, the SNR in the time-equivalent NUS

spectrum has increased by a factor of *3.5. This confirms

the results of the simulations shown above. To confirm that

this result can be extended to 3-dimensional spectra, we

collected a low resolution 3D 15N edited NOESY (64
15N 9 128 1H increments, 4 scans per increment,

500 MHz instrument, RT probe) on the above GB1 sample

using both uniform sampling and non-uniform sampling of

1/16th of the data, with 16 times more scans per increment.

Figure 2c (uniform) and d (non-uniform) show the same
15N plane of the NOESY with a cross section in the direct
1H dimension running through a single peak. Noise

Table 1 Comparison of intensities and SNR of a simulated four-line

spectrum with 2.2 % rms white Gaussian noise relative to the tallest

signal, sampled uniformly and non-uniformly with 25 and 10 %

sampling densities (see Fig. 1)

Line Intensity SNR

Absolute Relative Mean rms Max

No noise

1 288 1

2 144 0.5

3 72 0.25

4 36 0.125

US with noise

1 281.3 1 49.8 45 18.8

2 140.6 0.499 24.9 22 9.4

3 76.5 0.272 13.5 12 5.1

4 28.3 0.101 5 4.5 1.89

25 % NUS

1 1,137 1 157 104 18.1

2 546.5 0.48 75 50 8.7

3 267.3 0.235 37.1 25 4.2

4 107.4 0.094 14.9 8.8 1.7

10 % NUS

1 2,875 1 483.1 244 27.6

2 1,481 0.515 254 125 14.21

3 607 0.211 104 51 5.83

4 379.9 0.132 65 32 3.65
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measurements of the data between 10.5 and 8.5 ppm where

used to estimate the SNR. In this case, the SNR was

improved *7.2 times on the non-uniform sampled spec-

trum. Figure 2e, f correspond to the same data as shown in

Fig. 2c, d, respectively, however, a vertical cross-section is

plotted; these are cross peaks from the diagonal backbone

amide proton at *7.8 ppm. The higher SNR apparent in

Fig. 2d, and hence Fig. 2f appears to make clearer several

NOE cross peaks between 3 and 0.5 ppm (indicated by

asterisks) that are within the noise in Fig. 2e. To test

whether these peaks are real and not the result or recon-

struction artifacts, we recorded a high resolution US

spectrum on our sample with 64 15N 9 1,200 1H incre-

ments on a 900 MHz instrument with cryoprobe. A com-

parison of the vertical cross-sections through this system

for the US, NUS and high resolution US spectra is shown

in supplemental Fig. S2. It is clear the signals identified in

the NUS cross-section with asterisks are real.

Fig. 2 Experimental comparison of the SNR in time-equivalent US

and NUS 2D 1H-15N HSQC spectra (a, b) and 3D 15N-dispersed

NOESY experiments (c–f). The spectra were recorded on an Bruker

500 spectrometer with a RT probe. a A 2D 1H-15N HSQC of GB1 was

recorded uniformly with 8 scans per increment, or b non-uniformly

measuring 10 % of the Nyquist points and 80 scans per increment. A

single horizontal cross section through a peak (indicated by arrows) is

plotted on both spectra. The SNR using the rms measure of noise was

improved by a factor of 3.4. c US (4 scans) and d NUS (64 scans,

6.25 % sparsity) versions of a 3D 15N dispersed NOESY experiment.

In each case a single 15N plane is plotted and a horizontal 1D cross

section is plotted through a single cross peak (c, d, indicated with

arrows). The SNR using an rms measure indicates an improvement by

a factor of *7.2. Panels e and f correspond to panels c and d above,

however a vertical cross section is drawn through one system of data

(indicated by arrows). The SNR improvement can be qualitatively

seen by the apparent appearance of extra NOE cross peaks for the

NUS data, indicated by asterisks. Whether these are real peaks was

tested with a longer uniformly sampled spectrum recorded on a

900 MHz instrument with a cryogenic probe. The comparison is

shown in supplemental Fig. S2, which validates the labeled signals as

real peaks
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Spectral sensitivity as the ability to observe a weak

peak

The important aspect of sensitivity in multidimensional

NMR experiments is the ability to detect weak peaks that

are close to the noise level. Strong peaks will always be

detectable with any sampling/reconstruction technique

while very weak peaks will never be detected above the

noise, irrespective of the sampling and processing method.

Whether sensitivity is improved by specialized sampling/

reconstruction has to focus on detectability of weak peaks

with heights around the noise level. Thus, we asked whe-

ther time-equivalent NUS is more reliable than US for

detecting weak peaks that are around or barely above the

noise level.

To address this question we performed a series of sim-

ulations. In each simulation, a single signal of defined

intensity (signal strength) and line width is simulated,

random noise is added, and an automated peak picker is

used to see whether the signal can be detected unambigu-

ously (see below). This procedure is repeated 100 times

with different sets of noise generated randomly where the

seed value varies from set to set, but the rms parameter of

the noise is kept constant. The number of times the auto-

mated peak picker identifies the correct peak out of the 100

simulations is given as the probability of identification of

the peak in percent. The results are summarized in Fig. 3

for signal strength from 0.01 to 10, plotted on a logarithmic

scale. The intensity setting of 10 was later found to rep-

resent a SNR of approximately 80.

For processing, each time-domain signal is zero-filled.

The peak location of the simulated signals is known to be

exactly in the center at 1,024 of 2,048 points. If the pixel

with the greatest value is 1,024 and at least a factor of
ffiffiffi

2
p

,

or 1.414 times greater than the next largest pixel value it is

counted as a success. Three representative simulations with

relative signal strengths of 0.01, 0.316 and 10 are plotted

with the noise. The SNR for the three cases is 0.08, 2.5 and

80. The resulting probability of detecting the signals cor-

rectly is 0, 16 and 100 %, respectively. The probability (as

a percentage) of finding the correct peak is plotted in

Fig. 3. Below we use this procedure to compare the spec-

tral sensitivity between different time-equivalent US and

NUS spectra.

Fig. 3 Procedure for estimating the detection sensitivity of NMR

spectra. The method is applicable to US as well as NUS obtained data.

For visualization, Fig. 3 demonstrates the procedure on a one

dimensional US spectrum. A signal is generated synthetically in the

time domain, here using 1 k complex data points. The frequency

position is well known and documented, the simulated relaxation set

to be exponentially declining to 1/(1.2 * e) emulating an FID

obtained to 1.2 * T2. Various sets of white Gaussian noise, in this

case 100 sets, were added with rms values set constant. This was the

repeated for different signal strengths as indicated on the horizontal

axis. The absolute signal strength of 10 was later found to represent a

SNR of around 80. Each simulated spectrum is then zero-filled and

Fourier transformed. A routine is developed that identifies if the

signal is detected successfully (see text), and the fraction of correct

identifications is plotted in percent versus the signal strength. Three

examples of signal strength are further identified, when the signal

cannot be detected, when the signal can be detected occasionally and

when it is expected that the signal should be detected with no

problem. Out of the curve it is then possible to identify various

statistical measure, e.g., 10, 50 and 90 % likelihood measures
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Comparison of the detection sensitivity

of time-equivalent US and NUS spectra

To test whether NUS can enhance the detection sensitivity

we produced the sensitivity curve as described in Fig. 3 for

different sampling schedules. Results are shown in Fig. 4. In

Fig. 4a we compare the detection sensitivity of US (red) with

three time-equivalent 25 % NUS data generated with the

Poisson-Gap Sampling procedure (Hyberts et al. 2010)

corresponding to one indirect dimension. SSW = 0 is a

sampling schedule where the sampling gap parameter for the

Poisson-Gap Sampling is uniform over the whole evolution

time. Thus, the 25 % sampled points do not have any pref-

erence to what part of the FID they are sampled more den-

sely. The plot of SSW = 0 compared to US shows that there

is no sensitivity gain. SSW = 1 represents a Poisson-Gap

sampling schedule weighted with dense sampling at the

beginning and the end of the indirect dimension, and the gap

length parameter follows one half of a sine period. Again this

does not provide a sensitivity gain. However, if we weigh the

gap length parameter according to a quarter of the sine period

(SSW = 2) we obtain a significant gain of spectral sensi-

tivity. For example, for a signal strength of 0.5, we have a

30 % chance of detecting the signal with US and NUS using

SSW = 0 or 1, however with SSW = 2, we have a 52 %

chance of observing the peak. Thus, we gain detection sen-

sitivity when sampling densely where the signal is strongest.

In Fig. 4b we compare US sampling with 25 % NUS

time-equivalent spectrum where the first half of the time

domain was NUS at half the Nyquist grid points selected

with Poisson Gap sampling at SSW = 0, 1, or 2, and the

second half was not sampled at all but reconstructed with

hmsIST. We find now that all NUS schedules provide a

sensitivity gain. Here for a signal strength of 0.5 with a

30 % chance of detection with US, the uniformly weighted

NUS (SSW = 0) yields a 50 % chance of detection, and

the two sinusoidal weighted sampling schedules exhibit a

60 % chance of detection.

Fig. 4 Comparison of the detection sensitivity between US (red) and

NUS spectra using different sampling schedules for one (a–c) and two

(d) indirect dimensions. The procedure outlined in Fig. 3 is applied to

various situations of NUS sampling (a–c) as well as multiple

dimensions (d). The findings are discussed in the text. Note that the

calibration of signal strength is dependent on the number of

dimensions and other factors. Conclusions should only be drawn

within a particular subfigure, not between subfigures. a The spectral

sensitivity for one indirect dimension is compared between US (solid
red) and three NUS indirect dimensions with SSW = 0, 1 or 2. Only

SSW = 2 yields a gain in spectral sensitivity as it samples densely at

the beginning where the signal is strongest. b The first half of the time

domain was sampled with 50 % sparsity. The missing points and the

second half of the time domain were reconstructed with hmsIST. Here

all three NUS schedules provide an improved spectral sensitivity.

c The first quarter of the FID was sampled uniformly, and the

subsequent three quarters were reconstructed with hmsIST. Although

there is a higher probability of detecting weak peaks it is less reliable

for detecting stronger peaks. d Simulation for two indirect dimensions

indicates an even stronger enhancement of the spectral sensitivity
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This result let us to ask the question whether it would be

beneficial to just sample the first 25 % of the time domain data

uniformly and predict the subsequent 75 % of the time domain

data points with hmsIST. This is essentially an attempt to use

hmsIST instead of linear prediction and would avoid the need

of setting up NUS schedules in the spectrometers. The results

of the simulations are shown in Fig. 4c. As can be seen this

approach is not advisable. Although there is an enhanced

probability of detecting weaker peaks the reliable detection of

stronger peaks is significantly reduced.

Next we asked whether NUS in two indirect dimensions of

3D NMR experiments would result in the same or even more

enhancement of detection sensitivity. Time-equivalent US

and NUS spectra with two indirect dimensions of 512 9 512

hyper-complex points were simulated using the same proce-

dure as described for one indirect dimension. The results are

shown in Fig. 4d and indicate that enhancement of detection

sensitivity is significantly larger than with only one indirect

dimension. Here we compare a US spectrum with the time-

equivalent NUS where 6.25 % of the Nyquist points were

sampled with 16 times more scans per increment. A signal

with strength 0.5 is detected with 4 % probability with US but

with 88 % probability when using NUS. When sampling only

1 % of the Nyquist grid and recording 100 times more scans

per increment the detection-probability curve is shifted even

more toward weaker peaks. We expect that the gain in

detection sensitivity will be even larger in 4D spectra. How-

ever, to perform the analysis as shown in Fig. 4 with simu-

lating hundreds of NUS data sets in three indirect dimensions

is extremely time consuming and cannot be done currently

with our computing resources. An experimental comparison

of US and time-equivalent NUS high-resolution 4D NMR

experiments is not feasible since high-resolution 4D US

spectra cannot be recorded within a reasonable amount of

time. It has been shown however, that high-quality 4D NO-

ESY spectra can be obtained with NUS and suitable recon-

struction mehods (Hyberts et al. 2012b; Coggins et al. 2012).

Fidelity of peak positions and line widths

in time-equivalent US and NUS spectra

To test whether NUS affects peak positions and line

widths, and whether this depends on peak maxima placed

on or off the Nyquist grid we performed another set of

simulations (100 sets of noise per case), which are sum-

marized in Table 2. We compare US with three versions of

NUS as described in Fig. 4. The peaks simulated were

placed on and off the Nyquist grid. In the Table 2, on and

off grid is identified by freq ? 0.000, freq ? 1.428 and

1.833, respectively. The latter puts the signal exactly

between two grid points, the former about 39 % away from

a grid point. Furthermore, the peaks are simulated with the

signal strength of 10.0 and 1.0, respectively. The weak

peaks are notoriously difficult to pick, especially if there is

only statistical probability of less than 1 to identify the

peak at all. The peaks are picked with the NMRPipe peak

peaking routine. Hence in this analysis, the peak fitting

found in NMRDraw was used.

From Table 2 it can be seen that both the frequency and

the line width measures of NUS reconstruction are practi-

cally identical to that of the uniformly sampled data, con-

sidering the digital resolution of 3.666; except possibly when

using IST to extrapolate rather than interpolate Table 2c, d.

If there is any recognizable trend, the values are more in an

agreement using SSW = 2 rather than using SSW = 0 or 1.

The peak positions may depend on whether two or more

signals are close to each other. Here a one-signal system

was used in order to eliminate the issue of sensitivity

enhancement due to interference between signals, and the

main point of this paper is on sensitivity. However, we

have treated the question of closely spaced peak positions

in a recent publication (Hyberts et al. 2012b), which deals

with the situation of nearly overlapping peaks but evalu-

ated by FM reconstruction and SSW = 2. In our experi-

ence there is no particular issue using SSW = 2 over

SSW = 0, 1 and IST reconstruction. When analyzing these

issues for multiple small signals, the evaluation would not

be so simple as to analyze peak maxima, and peak fitting

would be appropriate.

The data discussed above show that IST reconstruction

works better when interpolation is used rather than extrapo-

lation. This is documented with Table 2 and above. It is inline

with our earlier observations that resulted in the Poisson Gap

Sampling method (Hyberts et al. 2010), which stated that (1)

big gaps of the sampling schedule are generally unfavorable

and (2) gaps at the beginning or end of the sampling are worse

than in the middle. Indeed, Table 2d indicates an increasing

although minor uncertainty of peak positions for the situation

in Fig. 4c, especially at the lower intensities. The peak height

may not be diminishing, but the ability to pick the maximum

value at correct pixels is diminished. Fig. 4c also shows that

the issue of sensitivity is not simply that of the initial energy of

the sampled data points, but more complex in that the peak

height (which essentially is used as a measure of ability to

identify the signal) and the peak position also depends on later

sampled data. In order to gain maximum sensitivity, a proper

mixture of earlier and later sampled data points are observably

required. Thus, we do not recommend the sampling schedule

examined in Fig. 4c.

Discussion

This manuscript addresses a long-standing question whe-

ther NUS can enhance SNR and sensitivity. This is

important for large and challenging systems that are at the
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limit of what can be handled with solution NMR. These are

systems for which strongest magnetic fields are required

providing the best resolution and hardware sensitivity to

enable resonance assignments, structure determination and

interaction studies. Uniform sampling in 3D and 4D

experiments is not able to cover the resolution in the

indirect dimensions that would be possible and desirable

based on the spectrometer hardware. On the other hand,

many smaller systems often studied with NMR spectros-

copy do not require the highest resolution and sensitivity.

Table 2 Effect of sampling schedule and on/off-grid sampling on peak positions and line widths for two representative signal strengths of 10

and 1

Digital resolution On grid 1/3 point off 1/2 point off On grid 1/3 point off 1/2 point off

3.666 Hz/point freq ? 0.000,

strength = 10

freq ? 1.426,

strength = 10

freq ? 1.833,

strength = 10

freq ? 0.000,

strength = 1

freq ? 1.426,

strength = 1

freq ? 1.833,

strength = 1

(a) Uniformly sampled freq: 2,377.63 freq: 2,378.83 freq: 2,379.46 freq: 2,377.62 freq: 2,378.86 freq: 2,379.45

±0.020 ±0.035 ±0.052 ±0.208 ±0.370 ±0.446

line: 7.03 line: 7.83 line: 8.53 line: 7.06 line: 7.89 line: 8.16

±0.030 ±0.049 ±0.054 ±0.316 ±0.515 ±0.4704

(b) NUS 256/1,024 freq: 2,377.63 freq: 2,378.84 freq: 2,379.46 freq: 2,377.67 freq: 2,378.93 freq: 2,379.52

SSW = 0 ±0.024 ±0.037 ±0.052 ±0.211 ±0.368 ±0.432

line: 6.96 line: 7.75 line: 8.44 line: 6.56 line: 7.36 line: 7.62

±0.028 ±0.047 ±0.053 ±0.209 ±0.419 ±0.334

SSW = 1 freq: 2,377.62 freq: 2,378.83 freq: 2,379.46 freq: 2,377.55 freq: 2,378.87 freq: 2,379.47

±0.028 ±0.044 ±0.062 ±0.289 ±0.421 ±0.471

line: 7.02 line: 7.82 line: 8.51 line: 6.81 line: 7.63 line: 7.89

±0.032 ±0.054 ±0.062 ±0.300 ±0.525 ±0.441

SSW = 2 freq: 2,377.62 freq: 2,378.83 freq: 2,379.46 freq: 2,377.57 freq: 2,378.88 freq: 2,379.46

±0.029 ±0.048 ±0.069 ±0.284 ±0.503 ±0.575

line: 7.03 line: 7.83 line: 8.51 line: 7.00818 line: 7.85131 line: 7.97442

± 0.035 ±0.062 ±0.070 ±0.349 ±0.628 ±0.585

(c) NUS 256/512 ? 512 freq: 2,377.65 freq: 2,378.8 freq: 2,379.51 freq: 2,377.67 freq: 2,378.94 freq: 2,379.54

SSW = 0 ±0.047 ±0.116 ±0.168 ±0.231 ±0.554 ±0.607

line: 6.64 line: 7.75 line: 8.38 line: 6.49 line: 7.39 line: 7.47

±0.063 ±0.192 ±0.195 ±0.292 ±0.591 ±0.548

SSW = 1 freq: 2,377.64 freq: 2,378.79 freq: 2,379.47 freq: 2,377.68 freq: 2,379 freq: 2,379.62

±0.045 ±0.111 ±0.174 ±0.186 ±0.509 ±0.560

line: 6.71 line: 7.80 line: 8.42 line: 6.58 line: 7.56 line: 7.62

±0.064 ±0.190 ±0.214 ±0.375 ±0.541 ±0.451

SSW = 2 freq: 2,377.63 freq: 2,378.75 freq: 2,379.44 freq: 2,377.59 freq: 2,378.83 freq: 2,379.41

±0.045 ±0.090 ±0.152 ±0.281 ±0.629 ±0.721

line: 6.63 line: 7.73 line: 8.51 line: 6.69 line: 7.51 line: 7.66

±0.061 ±0.172 ±0.205 ±0.467 ±0.859 ±0.765

(d) NUS 256/256 ? 768 freq: 2,377.62 freq: 2,378.67 freq: 2,379.41 freq: 2,377.43 freq: 2,378.76 freq: 2,379.24

±0.032 ±0.126 ±0.209 ±0.806 ±1.012 ±1.104

line: 6.15 line: 7.26 line: 8.06 line: 6.82 line: 7.00 line: 7.09

±0.026 ±0.172 ±0.195 ±0.643 ±0.629 ±0.660

We compare uniform sampling (a) with NUS where 256 of 1,024 points were selected with Poisson Gap Sampling (b), NUS of 256 out of the first

512 points and IST prediction of the subsequent 512 points (c), and uniform sampling of the first 256 points with IST prediction of the subsequent

768 points (d). Sinusoidal weighting schedules SSW = 0, 1 and 2 (see ‘‘Materials and methods’’ section) are compared. Peak maxima placed on

or off Nyquist grid are compared. Here ‘‘freq ? 0.000’’, ‘‘freq ? 1.426’’ and ‘‘freq ? 1.833’’ places the peak maximum on the Nyquist grid, at

� off, and at � off the grid points. Peaks are fitted with nmrDraw and the resulting maxima (freq) and line width (line) are reported. The

simulated data consist of 1,024 complex time domain data points (136 ms) resulting in a spectral width after zero filling of 7,507.50 Hz
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They can be studied with US, and they do not typically

require the highest field instruments. The study presented

here is of interest for those systems that are at the limit of

what can be done with NMR.

Here we introduce the term ‘‘detection sensitivity’’ and

define it as the probabilistic ability to detect weak peaks. This

is in contrast to the hardware sensitivity, which is part of the

specifications of instruments and measured on concentrated

standard samples where the SNR of the test signals are much

larger than one. While the hardware sensitivity is clearly

related to the detection sensitivity the latter depends on many

parameters including the length of the evolution time relative

to the relaxation times of the evolving coherences and the

sampling schedules. Obviously, it also depends on a recon-

struction procedure that doesn’t produce artifacts. The

hmsIST program presented recently (Hyberts et al. 2012b) is

an example of such software, and it can efficiently recon-

struct high-resolution NUS spectra up to 4 dimensions. Other

reconstruction procedures (Coggins et al. 2012; Hiller et al.

2009; Jaravine et al. 2006; Bostock et al. 2012) may do this as

well but a comparison is outside the scope of this paper and

should be performed by a third party.

As described above, the detection sensitivity depends

strongly on the sampling schedule. The NUS approach

allows sampling where there is most signal while main-

taining resolution by sampling more sparsely at time points

with lower signal (see Fig. 4a, b). Here we simulated and

measured data with essentially exponentially decaying

coherences. Thus, sampling densely at the beginning and

less densely towards the end provides the highest detection

sensitivity. The Poisson-Gap sampling makes sure to avoid

large gaps and introduces randomization to avoid folding

bias. The strategy to sample densely at the beginning and

more sparse towards the end has some relation to the well-

known multiplication of FIDs with a decaying exponential

function. However, this is fundamentally different since

multiplication with an exponential downscales measured

time domain data points. Furthermore, it requires sampling

of the entire Nyquist grid. Here we examined three versions

of Poisson Gap sampling (SSW = 0, SSW = 1 and

SSW = 2), and also extending a NUS time domain data set

into a time range not sampled and reconstructed using

hmsIST. The sampling procedures described here are

unlikely to present a final strategy of designing sampling

schedules. Better schedules may be found, such as for

signals with beats due to large uniform coupling constants

or constant time evolution periods. This is an important

topic for future research.

It is important to mention that the apparent noise pro-

duced by reconstructing NUS data is not white as in US

spectra. Often the noise is assumed to be Gaussian dis-

tributed and white colored. By color of noise, a distribution

with equal probabilities of all frequencies is considered

‘‘white’’ when low frequencies are predominant the noise is

said to be red; blue noise indicate predominantly high

frequency components. The assumption of Gaussian white

noise is reasonable for proper use of the NMR electronics,

and when no apodization, zero-filling or non-uniform

sampling/reconstruction is applied. Apodization typically

red-shifts the colors of noise as apodizations typically

produce higher amplitudes at the beginning of the FID and

smaller towards the end. Zero-filling brings in zero values

for the blue components, hence also effectively red-shifts

the noise. Non-uniform sampling brings a more compli-

cated distribution of the noise, especially after recon-

struction. Whereas the character of uniformly sampled

noise after apodization and/or zero-filling is approximately

Gaussian, this is far from the case for non-uniformly

sampled NMR data. This has been noticed before (Stern

et al. 2007; Candes et al. 2008; Hyberts et al. 2012a, b,

2010). Hence we have suggested monitoring the maximum

value of a noise pixel, ‘‘peak-noise’’, or more mathemati-

cally expressed, L? noise. This approach has shown to be

fruitful since small-intensity signals are often compared

with the maximum height noise, and that the calculations

have shown to be more fair and stable than L1 or L2

treatment when comparing SNR of uniform sampled data

versus reconstructed non-uniformly sampled data. How-

ever, the approach presented here enhances the ability to

observe weak peaks that would be lost with traditional US

and FFT processing. Our approach of spectra reconstruc-

tion also reconstructs noise. It appears to de-emphasize

weak noise points and maintains stronger noise points (see

Fig. 1). Strong noise points may appear as false positives.

However, they have typically spike-like line shapes and are

not larger than the original noise, even for equal time. In

heteronuclear 3D and 4D spectra they tend not to connect

between assigned resonances. Thus, they do not represent a

serious problem.

Conclusion

We have shown that NUS can enhance the SNR and the

detection sensitivity of multidimensional NMR experi-

ments when suitable sampling schedules are used. It is

important to sample more where the signal is strong and

less where it is weak. It is important to maintain much

random character in the sampling schedules to avoid

folding artifacts. This is achieved with the Poisson-Gap

sampling schedules that guarantee randomness and avoid

large gaps. The gain in detection sensitivity is more pro-

nounced with higher dimensional data but also significant

in spectra with only one indirect dimension. Thus, high-

resolution spectra can be recorded at high detection

sensitivity.
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